If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+x^2=20
We move all terms to the left:
7x+x^2-(20)=0
a = 1; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·1·(-20)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{129}}{2*1}=\frac{-7-\sqrt{129}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{129}}{2*1}=\frac{-7+\sqrt{129}}{2} $
| 164+3x=180 | | -6-m=-1 | | d-830/9=13 | | 104=4-9x | | 9(d-871)=522 | | 60=-9x-21 | | 4b-15=53 | | 5.4+(5.7-p)=6.7 | | 4b-15=57 | | X+29=3(x+3) | | -12x-45+7x+8=5x+3 | | 21=-3z-3 | | 5.s=30 | | 4.g=4 | | d.8=48 | | M=-2x+14 | | 4x+7=63-10x | | 9=5b-2b | | 5(x-3)^3/4=40 | | 2x+8+(-8)=14+(-8) | | -4y-8(6y-4)=7-5(4-y) | | g.9=18 | | z+1/2z=180 | | g.5=5 | | (7x+12)+(25x-14)=180 | | 164+3x=90 | | -1=2m/3 | | 3x^2+3+8x=0 | | g-961/26=1 | | u.7=14 | | 830=10(r-900) | | 7.r=7 |